

PHOSPHATE POLICY ISSUES FROM THE INDUSTRY'S PERSPECTIVE

Patrick Heffer, IFA

Global TraPs/GPNM Global Conference on Nutrient Management 18-20 June 2013, Beijing, China

- Brief P Fertilizer Market Update
- The P Cycle What Are the Issues?
- Industry's Perspective

 Understanding the P cycle
 Nutrient stewardship
 - Research and innovation

MARKET UPDATE

Historical Evolution of P Fertilizer Consumption (Mt P₂O₅)

Historical Evolution of P Fertilizer Consumption by Product (Mt P₂O₅)

Source: IFA Agriculture

Global Fertilizer Demand Medium-term Outlook (Mt nutrients)

Regional P Fertilizer Demand Medium-term Outlook (Mt P₂O₅)

Source: IFA Agriculture

Capacity Evolution Medium-Term

2013 to

	Mt P rock	2013 to 2017	2017 %	Annual growth
	World	35 to 257 Mt	16%	3%
P Rock Potential Supply Growth				
	Africa	a 11	20%	4%
	West Asia	n 8	44%	9%
	East Asia	n 8	10%	2%
	Latin America	a 6	45%	9%

Source: IFA PIT

World Phosphoric Acid Capacity Changes

Source: IFA PIT

Regional Phosphoric Acid Capacity Changes

Main Processed Phosphates Capacity Changes

Industry Invests Heavily to Meet Rising Demand

Between 2012 and 2017:

- 220 new fertilizer units
 + 20 projects related to P rock mining expected to come on stream
- Equivalent \$150 billion investment (of which ~\$23 billion in P sector)

THE P CYCLE WHAT ARE THE ISSUES?

Simplified P Cycle and Related Issues

INDUSTRY'S PERSPECTIVE

Understanding the P Cycle

- Disproportionate attention paid to reserves and resources
- Essential to better understand other P pools and flows at different scales:
 - o Erosion/runoff losses: amounts
 - Manure/sludge recycling: amounts, recycling rate, use efficiency
 - Virtual trade with agricultural commodities: impact on requirements
- Prerequisite to sound decisions/responses

Nutrient Stewardship

Managing Nutrients to Meet Sustainability Goals

- Improve profitability
- Increase productivity
 - \rightarrow Reduce hunger
 - \rightarrow Prevent land use changes
- Minimize nutrient losses to the environment

World Undernourishment

Improving P Use Efficiency

- Desirable but shall not be to the detriment of productivity and soil fertility (effectiveness)
- How to measure it?
 → Output/input ratio over sufficiently long period of time
- Losses mostly through soil erosion and in concentrated livestock farming areas
- Low PUE in year of application, BUT can reach up to 90% using the balance method over at least a decade in temperate countries

Conceptual diagram for the forms of inorganic P in soils categorized in terms of accessibility, extractability and plant availability

- Inappropriate fertilizer practices are widespread:
 - Blanket recommendations
 - Unbalanced fertilization (fertilizer subsidies)
 - No soil testing/plant analysis
- Often responsible for:
 - $\circ~$ large yield gaps
 - o poor fertilizer use efficiency
 - $\circ\;$ nutrient leakage to the environment
- Best management practices are aimed at improving productivity, profitability, preserve the environment
 - \rightarrow meet the economic, social and environmental goals

- Industry takes its responsibility
- Several industry-led initiatives:
 - 4R Nutrient Stewardship adopted by IFA and promoted by IPNI (framework)
 Apply the right product at the right rate, at the right time, in the right place
 - Nutrient Stewardship programme developed by Fertilizers Europe
 - Fertcare programme implemented by Fertilizers Australia and the Australian Fertiliser Services Association (AFSA)
- IFA will define criteria to recognize Nutrient Stewardship approaches → will encourage higher standards

- Developing countries account for 2/3 of world consumption
- Inefficient 'conventional' governmental extension
- Hundreds of million smallholder farmers are not/poorly advised on fertilizer management (poor use efficiency)
- Multiple initiatives by fertilizer industry and retailers
- Develop solutions to supplement extension workers:
 - Develop common knowledge platform to ensure consistent messages
 - Train agri-input dealers to provide agronomic advice
 - Use mobile phone technology for customized, real-time, crop- and site-specific recommendations
- Huge challenge \rightarrow requires PPPs

Credit: DSCL

Credit: IFFCO

Research and Innovation

Where Is More Research and Innovation Needed?

- Develop new fertilizer products
 - P fertilizers with specific properties (for fertigation, foliar fertilization, seed coating...)
 - Slow- and controlled-release P fertilizers: DAPR, polymer coating
 - Nanotechnology: what potential?
- Develop new processes
 - Removal of heavy metals (Cd in rock, Pb in sludge...)
 - Recycling (struvites, calcined P...)
- Develop new uses
 - \circ for phosphogypsum

What Is Done? What Is Needed?

- Rising R&D investments by industry
 - Specialty fertilizer segment
 - Engineering firms
 - Mainstream P producers
- IFA Working Group on Innovation and Research
- Virtual Fertilizer Research Center (launched in 2010 by IFDC): Creating the next generation of fertilizers
- Stimulate innovation

- Shift in culture (investment vs. cost, product differentiation)
- Develop incentives, enabling regulatory framework

IN CONCLUSION

for questions/comments: pheffer@fertilizer.org

